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Second-Order Perturbative Analysis with Approximated
Integration for Propagation Mode in Two-Dimensional
Two-Slab Waveguides

Naofumi KITSUNEZAKI†a), Member

SUMMARY We calculated propagation constants of supermodes for
two-dimensional two-slab waveguides, with small core gap, using second-
order perturbation expansion from gapless slab waveguide system, and
compared our results with the existing works. In the perturbation cal-
culation, we used trapezoidal method to calculate the integral over the
transverse direction in space and obtained second-order expansion of (core
gap)/(core width) for propagation constants. Our result can explain the
qualitative relationship between the propagation constants and the gap dis-
tance in the neighbor of (core gap)/(core width) being zero.
key words: propagation constants of supermodes, second-order perturba-
tion, two-slab waveguides, Maxwell’s equation, Schrödinger’s equation

1. Introduction

When monochromatic light enters into one waveguide of
two parallel waveguides systems having the same core
width, it is well known that the light propagates in a lon-
gitudinal direction while periodically changing waveguides
one after the other. Such a behavior has been analyzed
based on various analytical methods, including the coupled
mode equation or the coupled power equation [1]–[3], ma-
trix method [4], and various numerical methods [5]–[7].

When the distance between the cores of respective
waveguides, which is referred to as core gap in the following
text, is much larger than the core width, and when light prop-
agates in one of the cores, the amplitude of the light out of
the core falls exponentially and that in the adjacent core can
be neglected. Based on this fact, coupling mode theory has
been derived from the Maxwell’s equations using an elec-
tromagnetic field in a waveguide array superposed by eigen-
modes of the respective waveguides with the slowly varying
envelope approximation. An interaction between one eigen-
mode and the adjacent waveguide has been perturbatively
introduced [2]. Electromagnetic field in transverse direc-
tion is a solution of the Schrödinger equation, which is de-
rived from the Maxwell’s equation. In the field of optics, the
Schrödinger equation is often referred to as the Helmholtz’s
equation.

On the other hand, when the core gap is much smaller
than the core width so that the amplitude of the propagating
light in the adjacent core cannot be neglected, the basis of
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coupling mode theory is invalid. Instead of using propagat-
ing modes for respective waveguides, even and odd mode
analysis was proposed by Suematsu and Kishino [8], which
was later referred to as supermode analysis [9].

The Schrödinger equation is well known as a funda-
mental equation in quantum mechanics, and perturbation
analysis is used as a major approximation method to solve
the Schrödinger equation, when slight deformation of poten-
tial makes the quantum system exactly solvable [10], [11].
In our optical system, the index distribution, which essen-
tially corresponds to potential in quantum system, for two
cores with small gap becomes one gap-less core with twice
width when the index distribution is slightly deformed. As
the optical model for one core slab waveguide can be ex-
actly and easily solved, that for the two-slab waveguides
with small gap is appropriate for perturbative analysis.

In this study, we calculated the propagation constants
of supermodes for two-dimensional two-slab waveguides
based on second-order perturbation from gap-less system,
and compared the result with analytic and numerical results
reported in the existing works [5]–[7]. Because our analy-
sis is based on a gap-less single waveguide, it would be still
easy to analyze an optical behavior in a waveguide array by
using perturbation analysis if the number of waveguide in
the array is increased. We restricted our discussion regard-
ing electromagnetic field in the TE mode according to these
works.

2. Model

Figure 1 shows the spatial configuration of our optical model
where two symmetric slab waveguides are configured in par-
allel. The two cores have the same index n1 and the same
core width w, and clads with index n2, where n1 and n2 are
constant, and n1 > n2. The core width w, core gap d, and
indices n1 and n2 are chosen so that there are only one sym-
metric and one anti-symmetric propagation modes. Index
distribution n(x) is set as:

n(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n2, |x| < d

2 ,
n1,

d
2 < |x| < d

2 + w,

n2,
d
2 + w < |x|,

(1)

which is constant, except for x = ± d
2 and x = ±( d

2 + w), as
shown in Fig. 1(a). The index distribution is constant in the
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Fig. 1 Optical system.

y and z direction. The z direction is defined by the direction
to propagate light. The angular frequency of the monochro-
matic light is ω.

As index distribution has no y-directional variation,
electromagnetic fields do not depend on y. For electric field
�E(t, x, z) and magnetic field �H(t, x, z), the time variable t can
be separated from spatial variables to �E(t, x, z) = eiωt�e(x, z)
and �H(t, x, z) = eiωt�h(x, z), because we are interested in
monochromatic light with angular frequency ω. Subse-
quently, wave equations for hy(x, z) and ey(x, z) are derived:(

∂2
x + ∂

2
z +

n(x)2

�2

)
Ψ(x, z) = 0, (2)

where Ψ is hy and ey, � is λ
2π . For the TE mode, we

use the boundary condition that Ψ(x, y) and ∂xΨ(x, y) are
continuous at |x| = d/2 and d/2 + w, where n(x) discon-
tinuously change. For the TM mode, r.h.s of Eq. (2) be-
comes 2∂x log[n(x)]∂xΨ(x, z). The boundary condition be-
comes that Ψ(x, z) and 1

n2 ∂xΨ(x, z) are continuous at |x| =
d/2 and d/2 + w. As we are interested in the TE mode, Ψ
means ey in the following. The other components of electric
and magnetic fields are derived from Eq. (2) [3].

Equation (2) is usually solved by separating variables
as:

Ψ(x, z) = ψ(x)φ(z), (3)

and is written as:

∂2
zφ(z) = eφ(z), (4)(
−∂2

x −
n(x)2

�2

)
ψ(x) = eψ(x), (5)

where e is a constant number. From Eq. (4), it is obvious
that e cannot be positive if the region of z is −∞ < z < ∞,
because positive e makes φ(z) diverge in z→ ∞ or z→ −∞.
For any negative e, there exists positive β such that

e = −β2, (6)

where β is the propagation constant, and the solution of
Eq. (4) represents propagation in positive or negative z-
direction with propagation constant β =

√−e.
The problem in solving Eq. (5) is essentially the same

as that in solving a one-dimensional Schrödinger equation
[10], [11]. The problem to solve Eq. (5) is known as eigen-
value and eigenfunction problem, where e is the eigenvalue
and ψ is the eigenfunction for the operator:

−∂2
x −

n2(x)
�2

. (7)

The eigenfunction is referred to as eigenmode in the follow-
ing. The solution of Eq. (5) has the following feature: non-
trivial solutions of Eq. (5) exist for discrete value of e when

e is in the range of − n2
1

�2 < e < − n2
2

�2 , and for continuous value

of e when − n2
2

�2 < e.
In the following section, we solve Eq. (5) with second-

order perturbation from a gapless system with suitable ap-
proximated integration to calculate the propagation con-
stants for even and odd supermodes. In Sect. 4, we apply our
result to one specific model in the existing works [5]–[7] in
which propagation constants are calculated using numerical
simulations. The final section is devoted to summary and
discussion.

3. Perturbative Solution

To solve Eq. (5), we decomposed square of index distribu-
tion n2(x) into square of index distribution at d = 0 (n2

0(x))
and the difference between n2(x) and n2

0(x) (n2
p(x)) as:

n2(x) = n2
0(x) + n2

p(x), (8)

where

n2
0(x) =

{
n2

1, |x| < w,
n2

2, w < |x|, (9)

and

n2
p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n2

1 − n2
2,

∣∣∣|x| − w − d
4

∣∣∣ < d
4 ,−(n2

1 − n2
2), |x| < d

2 ,
0, otherwise.

(10)

Figure 2 shows the distribution of n2
0(x) (solid line) and

n2
p(x) (dotted line) on a z = const. line. The squared index

distribution of n2
0 shows that one core is laid on −w < x < w.

Instead of directly solving Eq. (5), we used the complete set
of solution for:(

−∂2
x −

n0(x)2

�2

)
v(x) = ev(x), (11)
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Fig. 2 Decomposition of squared index distributions. Solid line
represents n2

0(x) and dotted line represents n2
p(x).

to solve Eq. (5), perturbatively. All independent solutions
for Eq. (11) are:

V s
0(x)=

{
vs

0 cos( 2Ps x
w

), |x| < w,
vs

0 cos(2Ps)e−
2Qs (|x|−w)

w , w < |x|, (12)

Va
0 (x)=

{
va

0 sin( 2Pa x
w

), |x| < w,
va

0sign(x) sin(2Pa)e−
2Qa(|x|−w)

w , w < |x|, (13)

V s
e (x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vs

e cos( 2Pe x
w

), |x| < w,
vs

e{cos(2Pe) cos( 2Qe(|x|−w)
w

)
− Pe

Qe
sin(2Pe) sin( 2Qe(|x|−w)

w
)}, w < |x|,

(14)

Va
e (x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
va

e sin( 2Pe x
w

), |x| < w,
va

esign(x){sin(2Pe) cos( 2Qe(|x|−w)
w

)
+Pe

Qe
cos(2Pe) sin( 2Qe(|x|−w)

w
)}, w < |x|,

(15)

where

Ps =

√
n2

1 + esd

2λ
, Qs =

√
−(n2

2 + es)d

2�
, (16)

Pa =

√
n2

1 + ead

2λ
, Qa =

√
−(n2

2 + ea)d

2�
, (17)

Pe =

√
n2

1 + ed

2�
, Qe =

√
n2

2 + ed

2�
. (18)

It must be noted that es (or the pair of Ps and Qs) in Eq. (16)
and ea (or the pair of Pa and Qa) in Eq. (17) satisfies:

Qs cos(2Ps) = Ps sin(2Ps), (19)

P2
s + Q2

s = V2, (20)

Qa sin(2Pa) = −Pa cos(2Pa), (21)

P2
a + Q2

a = V2, (22)

where

V =

√
n2

1 − n2
2d

2�
, (23)

and e in Eq. (18) is a continuous parameter in the region

−n2
2 < e < 0.

V s
0 and Va

0 represent the symmetric and anti-symmetric
propagation mode, respectively, and V s

e and Va
e represent the

symmetric and anti-symmetric radiation modes with eigen-
value e in Eq. (11), respectively.

Here, let us define inner product of fields 〈 f |g〉 as:

〈 f |g〉 = 1
w

∫ ∞

−∞
dx f (x)g(x). (24)

Then, vs
0, va

0, vs
e, and va

e are defined so that V0, V s
e , and Va

e are
normalized to:

〈V p
0 |V p

0 〉 = δpq, (25)

〈V p
e |Vq

f 〉 = δpqδ(e − f ), (26)

〈V p
0 |Vq

e 〉 = 0, (27)

where p, q ∈ {s, a}, δpq is the Kronecker delta, and δ(e− f ) is
the Dirac delta function. The coefficients in Eqs. (12)–(15)
are derived as follows:

vs
0 =

√
2Qs

2Qs + 1
, (28)

va
0 =

√
2Qa

2Qa + 1
, (29)

vs
e =

√
V2Qe

π(n2
1−n2

2)(Q2
e cos2(2Pe)+P2

e sin(2Pe))
, (30)

va
e =

√
V2Qe

π(n2
1−n2

2)(Q2
e sin2(2Pe)+P2

e cos2(2Pe))
. (31)

In the second-order perturbation, the solution for
Eq. (5) is determined using Eq. (11) and its orthonormal so-
lution in Eqs. (12)–(15), which are the equation and the so-
lution for the gap-less system. Equation (5) is connected
with Eq. (11) using perturbation parameter ε as:{(

−∂2
x−

n0(x)2

�2

)
−εnp(x)2

�2

}
(V0(x)+εΔV (1)(x)+ε2ΔV (2)(x))

=
e0+εΔe(1)+ε2Δe(2)

�2
(V0(x)+εΔV(x)(1)+ε2ΔV(x)2),

(32)

where ψ(x) and e in Eq. (5) are perturbatively expanded in
series of ε and the solution is determined by equating the
coefficients of equal power of ε in both sides of Eq. (32) up
to ε2.

The results of Δe1
s ,Δe2

s ,Δe1
a, and Δe2

a are [10], [11]:

Δe(1)
s = −

〈
V s

0

∣∣∣∣∣∣∣
n2

p

�2

∣∣∣∣∣∣∣ V s
0

〉
, Δe(1)

a = −
〈
Va

0

∣∣∣∣∣∣∣
n2

p

�2

∣∣∣∣∣∣∣ Va
0

〉
,

(33)

Δe(2)
s =

∑
e�es

|〈V s
0 |

n2
p

�2 |V s
e 〉|2

e − es
, Δe(2)

a =
∑
e�ea

|〈Va
0 |

n2
p

�2 |Va
e 〉|2

e − ea
.

(34)
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In our case, Eq. (34) is symbolic because e, which is an
eigenvalue of Schrödinger equation (5), is a continuous pa-
rameter. Therefore, we must rewrite Eq. (34) for continuous
parameter:

Δe(2)
s = �

2
∫ emax

emin

deρ(e)
|〈V s

0 |
n2

p

�2 |V s
e 〉|2

e − es
, (35)

Δe(2)
a = �

2
∫ emax

emin

deρ(e)
|〈Va

0 |
n2

p

�2 |Va
e 〉|2

e − ea
, (36)

where ρ(e) represents mode density, and the coefficient �2 is
introduced to keep the dimension of Δe(2) consistent with e0

and Δe(1).
It can be noted that for any symmetric field f (x),

〈 f | n2
p

�2 |V s
0〉 is:

〈
f |n

2
p

�2
|V s

0

〉

= −2(n2
1 − n2

2)

�2w

⎛⎜⎜⎜⎜⎜⎝
∫ d

2

0
dx f (x)V s

0(x) −
∫ w+ d

2

w

dx f (x)V s
0(x)

⎞⎟⎟⎟⎟⎟⎠ ,
(37)

= − (n2
1 − n2

2)

�2

d
w

(
f (0)V s

0(0)+
d
dx

(
f

(
d
2

)
V s

0

(
d
2

))
d

4w

− f (w)V s
0(w) − d

dx

(
f

(
w+

d
2

)
V s

0

(
w+

d
2

))
d

4w

)
+o

(
w

d

)3
, (38)

where the trapezoidal method is used to deform from
Eq. (37) to Eq. (38). Similarly, for any anti-symmetric field

g(x), 〈g| n2
p

�2 |Va
0 〉 is also calculated. By using Eqs. (12)–(15),

we can obtain the the second-order Taylor expansion of d
w

for Δe(1)
s ,Δe(1)

a ,Δe(2)
s , and Δe(2)

a as:

Δe(1)
s =

2Qs(n2
1−n2

2)

(2Qs+1)�2

w

d

(
sin2(2Ps)+cos2(2Ps)

d
w

)
, (39)

Δe(1)
a =

2Qa(n2
1−n2

2)

(2Qa+1)�2

w

d

(
− sin2(2Pa)+sin2(2Pa)

d
w

)
, (40)

Δe(2)
s = −

2Qs(n2
1 − n2

2)V2

(2Qs + 1)π�2

(
d
w

)2

Is, (41)

Δe(2)
a = −

2Qa(n2
1 − n2

2)V2

(2Qa + 1)π�2

(
d
w

)2

Ia, (42)

where

Is =

∫ 0

−n2
2

de
ρs(e)Qe(1 − cos(2Ps) cos(2Pe))2

(e − es)(Q2
e cos2(2Pe) + P2

e sin2(2Pe))
, (43)

Ia =

∫ 0

−n2
2

de
ρa(e)Qe sin2(2Pa) sin2(2Pe)

(e − ea)(Q2
e sin2(2Pe) + P2

e cos2(2Pe))
, (44)

where ρs(e) and ρa(e) are mode densities for the symmet-
ric and anti-symmetric radiation modes, respectively, and
where Pe and Qe are defined in Eq. (18).

It should be noted that Eqs. (33), (34) suggest that the

order of perturbation coincides with the order of power of
n2

1 − n2
2 because the order of perturbation coincides with the

order of n2
p(x), which is proportional to n2

1−n2
2. Although it is

shown in Eqs. (41), (42), Δe(2)
s and Δe(2)

a include n2
1−n2

2, they
also include V2†, which is proportional to n2

1 − n2
2, thus they

are proportional to (n2
1 − n2

2)2. It means that the perturbative
analysis is valid if n2

1 − n2
2 	 1.

4. Comparison with Existing Works

In [5]–[7], propagation constants for the symmetric and anti-
symmetric supermodes in the TE mode for two parallel
waveguide arrays with parameters of n1 = 2.2, n2 = 2.19,
w = 2.0 μm, and d = 1.95 μm have been calculated. In these
works, almost the same propagation constants had been ob-
tained as follows:

βs =

{
13.01634 result in [5], [6],
13.0162 result in [7],

(45)

βa =

{
13.01096 result in [5], [6],
13.0110 result in [7].

(46)

It must be noted that we must calculate integral in
Eqs. (41), (42) to calculate the propagation constants in
second-order perturbation. However, as ρ(e) is unclear, we
had calculated these integrals with ρ(e) = 1.0 and 1.5. We
should note that the maximum value of the integral domain
is zero because we want to add all the effects of radiation
modes. However, for the equivalent quantum mechanical
system, the maximum value should be infinity.

Figure 3 shows the curves of β( d
w

) on 0 ≤ d
w
≤ 1.

It should be noted that the propagation constants in Fig. 3
and Δe discussed in the previous section have relationship
in Eq. (6) and

β

(
d
w

)
=

√
β2

0 − Δe(1) − Δe(2) + O

(
d
w

)3

(47)

= β0 − Δe(1) + Δe(2)

2β0
− (Δe(1))2

8β3
0

+ O

(
d
w

)3

, (48)

where β0 is a propagation constant at d
w
= 0. Figure 3(a)

shows the result of first-order perturbation. The red and blue
dotted lines show d

w
corrections of propagation constants for

the symmetric and anti-symmetric modes, respectively, and
the red and blue solid lines show ( d

w
)2 correction of these.

Equations (33) and (48) without Δe(2) explain the be-
havior of curves shown in Fig. 3(a), presenting the negative
coefficients of d

w
in βs and ( d

w
)2 in both propagation con-

stants, and positive coefficient of d
w

in βa. As shown in

Eqs. (12) and (13), e(1)
s and e(1)

a have terms proportional to
( d
w

)2. Moreover, the third term of Eq. (48) also have coef-
ficients of ( d

w
)2. Because of these terms, the solid lines are

not straight.
†When perturbation calculation includes radiation mode, V2

arises instead of n2
1 − n2

2 because of coefficients of normalized radi-
ation mode wave functions in Eqs. (30), (31).
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Fig. 3 Analytic and numerical results.

Figures 3(b) and 3(c) show the behavior of propaga-
tion constants. The red and blue solid lines show the result
of second-order perturbative correction for the symmetric
and anti-symmetric modes, respectively, when ρ = 1.0 in
Fig. 3(b), and when ρ = 1.5 in Fig. 3(c). In these figures,
the red and blue dotted lines show the accurate solutions of
the symmetric and anti-symmetric modes, respectively, ob-
tained by finding the roots of the transcendental equation,
through field matching at the dielectric interfaces. Circles at
d
w
= 0.975 are the results of previous works [5]–[7]. Fig-

ures 3(b) and 3(c) shows that the second order perturba-
tion improves the behavior of both coupling constants. In
Fig. 3(b), the curves of second order perturbation and nu-
meric solutions for the anti-symmetric mode have a substan-
tial overlap with each other. However, the curves for the
symmetric mode have an overlap only when d

w
is less than

about 0.1. In Fig. 3(c), the curves for both modes have an
overlap when d

w
is less than about 0.3. Comparing Figs. 3(b)

and 3(c), the second order perturbation for the symmetric
mode is more sensitive to change of ρ than that for the anti-
symmetric mode.

In any figures in Fig. 3, the coefficient of d
w

for the per-
turbation result of the symmetric mode is −0.0327 and one
for that of the anti-symmetric mode is 0.0244. On the other
hand, the slopes of accurate solutions at d

w
= 0 in Figs. 3(b)

and 3(c) for the symmetric and anti-symmetric modes are
−0.0327 and 0.0244, which are the same as the perturba-
tion results. This coincidence supports validity of first terms
for Eqs. (39), (40), and also supports validity of using trape-
zoidal method in Eq. (37)†.

5. Conclusion and Discussion

For the symmetric supermode, the propagation constant de-
creases according to increasing d

w
from d

w
= 0, and the curve

becomes convex downward. For the anti-symmetric super-
mode, the propagation constant increases according to in-
creasing d

w
from d

w
= 0, and the curve becomes convex up-

ward. We have shown that second-order perturbation with
the trapezoidal method gives at least qualitative behavior
shown earlier, despite using an assumption that the mode
density ρ(e) = 1.0 and ρ(e) = 1.5. In Fig. 3(b), it seems
that the perturbation result of the anti-symmetric mode is in
good agreement with the accurate solution, although the per-
turbation result of the symmetric mode does not agree with
the accurate solution.

However, as shown in Fig. 4, the difference between the
perturbation and accurate solutions for the anti-symmetric
mode at ρ = 1.5 is smaller than that at ρ = 1.0 in the region
of d

w
� 0.3. In general, the smaller the expansion parame-

ter becomes, the more accurate becomes an approximation
based on the Taylor expansion. Therefore, the agreement of
the perturbation and accurate results for the anti-symmetric
mode in Fig. 3(b) is coincidental.

It should be noted that Eq. (34), the second order per-
turbation, is based on the completeness relationship for the
gap-less system:

∑
i=a,s

⎡⎢⎢⎢⎢⎢⎣Vi
0(x)Vi

0(y) +
∑

e

Vi
e(x)Vi

e(y)

⎤⎥⎥⎥⎥⎥⎦ = δ(x − y), (49)

where δ(x) is Dirac delta function and where
∑

e is symbolic
because e is continuous parameter. Equation (49) means

†We have analytically shown in Ref. [12] that the coefficient of
d
w

for the perturbation results of e in the symmetric mode coincides
with the slope of the accurate solution at d

w
= 0.
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Fig. 4 The absolute value of the difference between the second order
perturbation and accurate solutions for the anti-symmetric mode at ρ = 1.0
and ρ = 1.5.

that any field can be expanded by propagation and radia-
tion modes and teaches expansion procedure. Practically,
the sum of e in Eq. (49) is calculated by integral over a suit-
able range of e, which distinguishes radiation mode from
each other. Notice that we can use other parameter, for ex-
ample β =

√−e. Because of such an ambiguity of parameter
selection, when we rewrite the sum over e to integral over e,
we must know the mode density that satisfies:

∑
e

Vi
e(x)Vi

e(y) =
∫ emax

emin

deρ(e)Vi
e(x)Vi

e(y). (50)

However, the exact form of the mode density is unknown,
we can only show the possibility that the second order per-
turbation can improve the behavior for the propagation con-
stants for supermodes. We think that quantitative behavior
for the propagation constants of supermodes could be ex-
plained by using the exact mode density.

Here, let us comment on the first sentence of Sect. 2,
“two symmetric slab waveguides are configured in parallel.”
When two waveguides are sufficiently separated, this state-
ment is valid because theory such as coupling mode theory,
in which electromagnetic field is expanded by eigenmodes
of the respective waveguides, is valid from the viewpoint
of perturbation theory. This means that there is no differ-
ence between the statement and basis modes of theory. We
can understand that the basis modes of theory is given by
zeroth order of perturbation [1]–[3]. However, when the
gap between two-slab waveguides is small enough, the the-
oretical analysis based on eigenmodes of respective waveg-
uides becomes invalid. Instead of using such eigenmodes,
supermodes, which are eigenmodes of one waveguide hav-
ing index distribution shown in Fig. 1(b) or Eq. (1), are used
to analyze the optical properties. The supermodes are per-
turbatively determined from eigenmodes of one multimode
slab waveguide. Therefore, to match the statement “one
multimode slab-like waveguide having index distribution of
Eq. (1)” would be preferable match the statement on theo-
retical analysis.
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